设G是一个有限阿贝尔群A和一个阶为2n的二面体群D的半直积,其中D的每个元素通过把A的任意元映成这个元的某个幂而作用在A上。如果G的一个Sy low2-子群有一个指数为2的阿贝尔子群,那么O utc(G)=1。特别地,这样的有限群G具有正规化子性质。
Let G be a semidirect product of a finite abelian group A and a dihedral group D of order 2n,where each element of D acts on A by raising every element of A to some fixed power.Suppose that a Sylow 2-subgroup of G has an abelian subgroup of index 2.Then Outc(G)=1.In particular,the normalizer property holds for such a group G.