设G是一个有限群,它的Sylow2-子群是T.I.集,证明了如果G的2的方幂阶类保持自同构在G任意的Sylow子群上的限制等于G的某个内自同构的限制,则它一定是一个内自同构.对这样的自同构的研究是由整群环的同构问题所引起的.
Let G be a finite group whose Sylow 2-subgroups are T.I. sets. It is shown that the class-preserving automorphism of G of order a power of 2 whose restriction to any Sylow subgroup of G equals the restriction of some inner automorphism of G is necessarily an inner automorphism. Interest in such automorphisms has arisen from the study of the isomorphism problem for integral group rings.