本文研究如下形式的(p,n-p)共轭奇异边值问题{(0-1)^(n-p)y^(n)=ψ(t)f(t,y),0〈t〈1,y^(i)(0)=0,0≤i≤p-1,y^(i)(1)=0,0≤i≤n-p-1,其中n≥2,1≤p≤n-1,ψ可允许在t=0和t=1时有奇性,f可在y=0时有奇性。本文作者在R.P.Agarwal等人工作的基础上,在适当假设下证明了此问题双重非负解的存在性
The following (p, n - p) conjugate boundary value problems are studied in this paper. {(0-1)^(n-p)y^(n)=ψ(t)f(t,y),0〈t〈1,y^(i)(0)=0,0≤i≤p-1,y^(i)(1)=0,0≤i≤n-p-1 where n≥2,1≤p≤n-1,ψ may be singular at t =0 and/or t = 1 , and f may be singular at y = 0. Based on the results obtained by R. P. Agarwal et. al., the existence of twin nonnegative solutions to the problem is proved under suitable conditions. A simple example is also given.