本文主要在多维空间中讨论一类发展型p-Laplace方程及方程组的初边值问题.这类问题在非牛顿渗流方程的理论研究中有着重要的意义.作者通过上、下解的方法证明了发展型p-Laplace方程解的整体有限性;同时利用两个关于常微分方程的比较原理,给出了相应的方程组解的整体有限性结果.
In this paper, the authors study evolution p-Laplace equations and systems in multidimensional space. The problems studied are important in studying the non-Newton fluidics.The authors prove the global finiteness of solutions for evolution p-Laplace equations with the use of the supsolution and subsolution method; and prove the global finiteness of solutions for evolution p-Laplace systems by using comparison principles of two ordinary differential equations.