主要证明了由参数型Marcinkiewicz积分M^ρ和Lipschitz函数b生成的交换子Mb ρ的有界性.在M的核满足一定的条件下,证明了Mb ρ不仅从Lebesgue空间L n/n-β(μ)Hardy间H1(μ)有界,而且从Lebesgue空间L n/β(μ)到RBMO(μ)有界.
In this paper, the authors prove the boundedness of the commutator Md ρ generated by the parameter Marcinkiewicz integral Mρ with Lipschitz function b. Under the assumption that the kernel of M satisfies certain condition, the authors prove that Mb ρ is bounded from the Lebesgue space Ln/n-β (μ) to the HardY space H1(μ), and from the Lebesgue space L n/β (μ) to the space RBMO(μ).