针对机器人在形状未知接触环境表面上进行柔顺力控制问题,在传统的力/位混合控制模型中采用一种智能预测算法,此算法通过三种预测因子预测并调整未来采样时刻的力/位混合控制模型中的期望轨迹,并考虑环境曲率和刚度变化的特点.为了验证预测算法的有效性,构建了开放式的机器人力控制系统,在不同期望力、不同跟踪速度下对非规则受限表面进行了力控制实验研究,分析了受限系统中未知环境参数对接触力的影响.实验结果证明该方法对未知接触环境的变化具有较强的适应能力.在实验条件下,稳定状态下的力控制误差可以控制在3%之内.
An intelligent prediction algorithm to be introduced in conventional hybrid position/force control model is developed to deal with the force-controlled execution of compliant robot tasks in an unknown environment.The algorithm makes use of the three factors to predict and readjust the expected trajectory given in hybrid position/force control model in future sampling,with the environmental change in curvature and stiffness taken into account.To verify the effectiveness of the proposed algorithm,an open arch...