位置:成果数据库 > 期刊 > 期刊详情页
复杂网络聚类方法
  • 期刊名称:软件学报. 2009,20(1),54-66.
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]吉林大学计算机科学与技术学院,吉林长春130012, [2]吉林大学符号计算与知识工程教育部重点实验室,吉林长春130012, [3]香港浸会大学计算机科学系,香港
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant Nos.60496321, 60503016, 60573073, 60873149 (国家自然科学基金); the National High-Tech Research and Development Plan o f China under Grant No.2006AA 10Z245 (国家高技术研究发展计划(863))
  • 相关项目:基于移动Agent的分布式优化问题求解
中文摘要:

网络簇结构是复杂网络最普遍和最重要的拓扑属性之一,具有同簇节点相互连接密集、异簇节点相互连接稀疏的特点.揭示网络簇结构的复杂网络聚类方法对分析复杂网络拓扑结构、理解其功能、发现其隐含模式、预测其行为都具有十分重要的理论意义,在社会网、生物网和万维网中具有广泛应用.综述了复杂网络聚类方法的研究背景、研究意义、国内外研究现状以及目前所面临的主要问题,试图为这个新兴的研究方向勾画出一个较为全面和清晰的概貌,为复杂网络分析、数据挖掘、智能Web、生物信息学等相关领域的研究者提供有益的参考.

英文摘要:

Network community structure is one of the most complex networks, within which the links between nodes are fundamental and important topological properties of very dense, but between which they are quite sparse. Network clustering algorithms which aim to discover all natural network communities from given complex networks are fundamentally important for both theoretical researches and practical applications, and can be used to analyze the topological structures, understand the functions, recognize the hidden patterns, and predict the behaviors of complex networks including social networks, biological networks, World Wide Webs and so on. This paper reviews the background, the motivation, the state of arts as well as the main issues of existing works related to discovering network communities, and tries to draw a comprehensive and clear outline for this new and active research area. This work is hopefully beneficial to the researchers from the communities of complex network analysis, data mining, intelligent Web and bioinformatics.

同期刊论文项目
期刊论文 69 会议论文 9
期刊论文 164 会议论文 64 获奖 8 著作 1
期刊论文 41 会议论文 12 著作 1
同项目期刊论文