给出了一种约减观察变量方法——假设所有的状态变量都不是观察变量,在此基础上逐步增加必要的观察变量,从而最终得到一个必要的观察变量集合.在添加必要的观察变量过程中,该方法不要求得到所有变量的相关信息,从而具有更好的通用性.井艮据是否存在单个观察变量能够区分域中任意两个状态的问题,分别给出了两种约减观察变量方法:当存在一个观察变量可以区分规划域中任意两个状态时,算法可以得到一个最小的观察变量集合;当不存在这样一个观察变量时,算法可以得到一个尽可能小的观察变量集合,但不能保证该集合最小.
How to decrease the observation variables for strong planning under partial observation is explored. Beginning from a domain under no observation, add necessary observation variables gradually to get a minimal set of observation variables necessary. Two methods are presented to decrease observation variables. With the former, when any of the two distinct states of the domain can be distinguished by an observation variable, this algorithm can find a minimal set of observation variables necessary for the execution of a plan. With the latter, when there are states that can't be distinguished by only one observation variable, this algorithm can find a set of observation variables as small as possible which are necessary for the execution of a plan.