利用反埃尔米特广义汉密尔顿矩阵的表示定理,得到了线性流形上反埃尔米特广义汉密尔顿矩阵反问题的最小二乘解的一般表达式,建立了线性矩阵方程在线性流形上可解的充分必要条件.对于任意给定的n阶复矩阵,证明了相关最佳逼近问胚解的存在性与惟一性,并推得了最佳逼近解的表达式.
By using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices, the authors obtain a general expression of the least-squares solutions of inverse problem for anti-Hermitian generalized Hamiltonian matrices on the linear manifoht. The authors establish some necessary and sufficient conditions for the linear matrix equation AX - B has a solution on the linear manifold. For any n-by-n complex matrix, the authors also derived an expression of the solution for relevant optimal approximate problem.