设矩阵X=(xij)∈R^n×n,如果xij=xn+1-i,n+1-j(i,j=1,2,…,n),则称X是中心对称矩阵.该文构造了一种迭代法求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C的中心对称解组(其中[X1,X2,…,Xl]是实矩阵组).当矩阵方程相容时,对任意初始的中心对称矩阵组[X1^(0),X2(0).…,Xl^(0)],在没有舍入误差的情况下,经过有限步迭代,得到它的一个中心对称解组,并且,通过选择一种特殊的中心对称矩阵组,得到它的最小范数中心对称解组.另外,给定中心对称矩阵组[^-X1,^-X2,…,^Xl],通过求矩阵方程A1^~X1B1+A2^~ X2B2+…+Al^~…XlBl=C(其中^~C=C~A1^-X1B1-A2^-X2B2-…-A1^-X1B1)的中心对称解组,得到它的最佳逼近中心对称解组.实例表明这种方法是有效的.
A matrix X = (xij) ∈ R^n×n is said to be centrosymmetric if xij = Xn+1-i,n+1-j (i,j = 1,2,…,n). In this paper, an iterative method is constructed for finding the centrosymmetrie solutions of matrix equation A1X1B1 + A2X2B2 + … + AlXlBl = C, where [X1,X2…,Xl] is a real matrix group. By this iterative method, the solvability of the matrix equation can be judged automatically. When the matrix equation is consistent, for any initial centrosymmetric matrix group[X1^(0),X^2(0), , … , Xl^(0)], a centrosymmetric solution group can be obtained within finite iteration steps in the absence of roundoff errors, and the least norm centrosymmetric solution group can be obtained by choosing a special kind of initial centrosylnmetric matrix group . In addition, the optimal approximation centrosymmetric solution group to a given centrosymmetric matrix group [^-X1, ^-X2,…,^-Xl] in Frobenius norm can be obtained by finding the least norm centrosymmetric solution group of new matrix equation A1^~X1B1 + A2^~X2B2 +…+ Al^~XlBl = ^~C,where ^~C = C - A1^~X1B1 - A2^~X2B2 Al^~XlBl. Given numerical examples show that the iterative method is efficient.