设a,b,C是满足条件a2+b2=c2的两两互素的正整数.Jesmanowicz于1956年猜想对于任意给定的正整数n,方程(nn)x+(bn)y=(cn)z仅有解(z,y,z)=(2,2,2).本文证明了方程(20n)x+(21n)y=(29n)z有唯一解(z,y,z)=(2,2,2).
Let a, b, c be relatively prime positive integers such that az + bz = cz. A conj ecture of Jes- manowicz(1956) is that for any given positive integer n, the only solution of (an)x + (bn)y = (cn)z in positive integers is (ar,y,z) = (2,2,2). In this paper,we show that (20n)x + (21n)y = (29n)z has no solution in positive integers other than (x,y,z) = (2,2,2).