讨论了无穷维Fréchet空间中的具有混沌性质的一类算子——非游荡算子.利用等价范数定理首次给出了判别一个线性算子是非游荡算子的判别方法——非游荡算子标准,然后利用这一标准证明了后移位算子B的解析半群T(t)=e^tB当t=1时是非游荡算子.最后运用泛函分析的方法得到了非游荡算子的性质:若T关于E是非游荡算子,则T^m和T^m也是非游荡算子;若T在E1,E2上的限制T|E1,T|E2是非游荡算子,则当E1∩E2={0}时,T|E1+E2是非游荡算子.
The nonwandering operator which has chaotic characteristic is discussed. Nonwandering operator criterion is proposed for the first time. By this criterion, a concrete linear operator semigroup T(t) = e^tB of backward shift operator B is proved to be nonwandering operator whenever t = 1. Two important properties of nonwandering operators are obtained. If T is a nonwandering operator relative to E, so are T^m=and T^-m. Let T|E1 and T|E2 be nonwandering operators relative to E1 and E2 reapectively and E1∩E2 = {0} , then T|E1+E2 is also nonwandering operator. The above work completes the research of such kind of linear chaotic operators.