位置:成果数据库 > 期刊 > 期刊详情页
参数嵌入算法在文本分类可视化中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南大学电气与信息工程学院,长沙410082
  • 相关基金:国家自然科学基金 (the National Natural Science Foundation of China under Grant No.60775047)国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2007AA04Z244,No.2008AA04Z214
中文摘要:

如何对文本分类的结果进行可视化研究一直是模式识别中研究的重点。在假设文本类别在低维嵌入空间服从高斯分布的前提下,通过朴素贝叶斯分类算法得到数据类别属性的后验概率矩阵,然后运用参数嵌入算法在低维空间可视化文本分类结果。参数嵌入算法是使嵌入空间数据的类后验概率与高维空间的条件概率Kullback Leibler散度和最小化的算法,属于同一类的数据在低维空间中分布较为集中,性质相似的数据之间的距离较近,而不同性质的数据之间距离则较大。其优点在于计算复杂度是数据的类别和相应个数的乘积,非常适合于数据量大,类别数较少的数据分类可视化。20新闻组数据集和微型新闻组数据集的实验结果证明了该算法的有效性。

英文摘要:

How to visualize the text classifier result is one of the focus field in pattern recognition.On the assumption that each class can be represented by a Gaussian distribution in the embedding space,through Naive Bayes classification algorithms posterior probability for data over classes was got, Parametric Embedding(PE) algorithm was applied into the visualization of classification result in low-dimensional.PE algorithm tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences in high-dimensional space.Data that are located at the center of cluster are typical data for the class, and data that are located between clusters have multiple topics,different data are located in the cluster of different classes.The outstanding advantage is that computing complexity is just the type of data and the corresponding number of the product,is well suited to large volume of data,fewer types of classified data visualization.Experimental result on 20 Newsgroups data sets and MiniNewsgroups data sets proves the effectiveness of the method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887