位置:成果数据库 > 期刊 > 期刊详情页
聚类电价预测方法研究
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TM73[电气工程—电力系统及自动化]
  • 作者机构:[1]华北电力大学工商管理学院,北京昌平区102206, [2]南开大学商学院,天津南开区300071
  • 相关基金:国家自然科学基金项目(70671042)
中文摘要:

针对电价变化模式的复杂性,提出了一种基于聚类分析的电价预测模型。该模型将复杂的电价预测问题分解为更简单的子问题求解,首先通过聚类技术将输入空间划分为若干特征更明显的子空间,然后在子空间内分别使用支持向量机进行建模和预测。聚类分析中先应用减聚类算法自动确定聚类教并获取较优的初始聚类中心,然后采用K-均值算法进一步优化。采用美国PJM电力市场历史边际电价数据进行的仿真研究表明,电价预测模型能有效、稳定地提高电价预测精度。

英文摘要:

A new model of electricity price forecasting based on cluster analysis is proposed. The complex forecasting problem is divided into simpler problems in the presented model. The whole input space is partitioned into several disjointed regions. Then, support vector machine is used for modeling and forecasting for each region. In the process of cluster analysis, K-means algorithm is used for further optimizing after the number of partitioned regions and initial cluster centers are automatically obtained by using subtractive clustering method. The simulation research using the historical data from PJM market shows that the proposed model can improve the precision of electricity price forecasting effectively and stably.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314