设f(z)是|z|〈R(0〈R〈+∞)上的亚纯函数,ai(z)(i=0,1,2,…,n-1)为|z|〈R上的n个全纯函数,且|ai(z)≤1,f(0)≠0,f(0)≠0,f(z)的每个零点的级大于或等于m,f(z)的每个极点的级大于或等于s;再设g(z)=f^(n)(z)+an-1(z)f^(n-1)(z)+…+a1f'(z)+a0f(z),其中g(0)≠0,g'(0)≠0,g(z)-bj的级分别为nj(nj≥2),g(0)≠bj(j=1,2,…,q),且(q-1)n+1/(q-1)m+1/q-1∑j=1^q1/nj(1+n/s)〈1.则对0〈r〈R,存在与n,l,m,s,q,bj,nj有关的正常数A、B和C,使得T(r,f)≤A(log^+|f(0)|+log^+|g(0)|+log^+1/|g(0)|+log+1/|g'(0)|)+B(logR/R-r+log+1/R+log^+R)+C.
Let f(z) is a meromorphic function in domain |z| 〈 R (0 〈 R 〈 +∞), ai (z) (i = 0,1, 2, ...,n- 1) be n holomorphic functions in |z|〈R,and |ai(z)≤l f(0)≠0, f(0)≠0,the order of each zero of is≥m,the order of each pole of f(z) is ≥s.and Letg(z)=f^(n)(z)+an-l(z)f^(n-1)(z)+……+a1f'(z)+a0f(z),in g'(0) ≠ 0 ,the order of each zero of g(z) -bj (j = 1,2,……, q, bi≠ bj,i ≠ j, bj≠ 0)is ≥ nj (nj ≥ 2) ,in the g(0) ≠ 0, (j 1,2,...,q),and(q-1)n+1/(q-1)m+1/q-1∑j=1^q1/nj(1+n/s)〈1 ,then exist positive number A, B, C ,in the A, B, C have somether to do with the n, l, m, s, q, by, nj satisfying T(r,f)≤A(log^+|f(0)|+log^+|g(0)|+log^+1/|g(0)|+log+1/|g'(0)|)+B(logR/R-r+log+1/R+log^+R)+C.