交通事故现场的痕迹由于受到其他车辆和行人等外界环境的影响而产生不确定性,但若将这些不确定性信息反映到事故再现结果中,即可增强再现结果的可信性。为能更好地从不确定痕迹定义域空间内找到事故再现仿真结果的取值区间,在均匀设计的基础上,提出一种改进的多响应面-均匀设计法(MUD法)。该方法首先用均匀设计生成实验样本点并进行实验;然后借助正交设计中的极差分析法分析实验结果而找出可能产生极值的子空间域;再在子空间域内生成新的样本点,并依托实验结果分析各子空间域及整个定义域空间内事故再现结果的极值;最终综合这些极值给出再现结果之取值区间。通过一个数值算例及真实的车人碰撞事故案例,发现MUD法能显著改善事故再现结果的精度,且仅需较少的仿真次数即能找出可能产生极值的子空间域。
Traces in a traffic accident are uncertain due to the influence of external environment such as other vehicles and pedestrians,but the results of accident reconstruction will be more credible if uncertainty information is well reflected in reconstruction results. In order to better find out the value interval of accident reconstruction results from the definition domain of uncertain traces,an improved multi-response surface uniform design(MUD)method is proposed based on uniform design. In MUD,firstly sample points are generated with uniform design and an experiment is conducted. Then the sub-space domain,which may probably produce extreme values,is found by extreme difference analysis,new sample points are generated in sub-space domain,and the extreme values of accident reconstruction results in each sub-space domain and whole special definition domain are analyzed based on experiment results. Finally,by summing up these extreme values,the value interval of reconstruction results is given.The method is applied to a numerical calculation example and a real vehicle-pedestrian accident case with results indicating that the MUD method proposed can significantly improve the accuracy of reconstruction results,and the probable sub-space domain can be found with a few runs of simulation.