位置:成果数据库 > 期刊 > 期刊详情页
Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet
  • ISSN号:1009-0630
  • 期刊名称:《等离子体科学与技术:英文版》
  • 时间:0
  • 分类:TS207.4[轻工技术与工程—食品科学;轻工技术与工程—食品科学与工程] O53[理学—等离子体物理;理学—物理]
  • 作者机构:[1]College of Materials Science and Engineering, Donghua University, Shanghai 201620, China, [2]College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, [3]College of Science, Donghua University, Shanghai 201620, China
  • 相关基金:supported by National Natural Science Foundation of China (Nos.10835004 and 10905010); the New Century Excellent Talents in University of China (No.NCET-08-0760)
中文摘要:

An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.

英文摘要:

An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《等离子体科学与技术:英文版》
  • 主管单位:中国科学院 中国科协
  • 主办单位:中国科学院等离子体物理研究所 中国力学学会
  • 主编:万元熙、谢纪康
  • 地址:合肥市1126信箱
  • 邮编:230031
  • 邮箱:pst@ipp.ac.cn
  • 电话:0551-5591617 5591388
  • 国际标准刊号:ISSN:1009-0630
  • 国内统一刊号:ISSN:34-1187/TL
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:89