壁虎具有在各种表面(如地面、墙面、天花板)上运动的超凡能力。根据大壁虎的脚趾结构及其粘附方式,模拟大壁虎脚趾,设计具有微小粘性褶皱和柔性悬臂结构的仿壁虎脚趾。用多用途摩擦粘附性能试验台,测定仿壁虎脚趾的粘附性能,即仿壁虎脚趾最大拉伸粘附力大小与粘附次数、拉伸角度、粘附轨迹等参数的关系。试验表明模拟壁虎脚趾研制的新型粘附脚趾具有和生物壁虎脚趾相近的粘附力学特性。将此脚趾用于仿壁虎机器人,成功地实现了仿壁虎机器人的90o爬壁。
Gecko has a superb locomotive capacity on variety surface,such as the ground,walls,ceilings and other complex environment in space.By analyzing the locomotion of gecko's toe adhesion structure and adhesion methods,bionic gecko's toe is designed which has several minimal adhering folds with flexible cantilever structure.By using multipurpose friction force experimental platform,the adhesion performance of bionic gecko's toe is analyzed,including the changing of the maximum tensile adhesion force of bionic gecko's toe with the adhesion numbers,the different stretching angles,different adhesion trajectories,and so on.The experiment shows that bionic gecko'toe has similar adhesion force performance with gecko's toe.When the bionic gecko's toe is designed for bionic gecko robot foot,the bionic gecko robot successfully achieves 90 degree wall-climbing movement.