从拓扑的包含关系这一全新的视角进一步认识协调近似表示空间的属性约简理论。在此基础上将协调近似表示空间中的等价关系放宽为一般关系,提出了一般协调近似表示空间的概念,并给出了一般协调近似表示空间关系约简理论,指出了可将其转换成一类覆盖族的约简且是协调覆盖决策系统属性约简的一般形式,最后用一个模型给出本文约简理论的应用实例。
The inclusion relation of topologies is used to recognize the theory of reduction in consistent approximate representation space. And then the equivalent relations of consistent approximate representation space are extend to general binary relations. The general consistent approximate representation space is defined. In general consistent approximate representation space, the theory of relational reduction is given, and an extension for the theory of reduction in consistent coveting decision systems is introduced. Finally, the model shows an application of the theory of reduction.