讨论了一般情况下,非正则型函数组Riemann-Hilbert边值问题的求解。对原问题通过引入与正则型问题相同的变换,将问题化成为分别求解相对独立的一个Riemann边值问题和一个Hilbert边值问题;通过引入对角矩阵的方法,将非正则型问题化为正则型,求得一般解;对如何应用Hermite插值多项式的特点、将一般解简化为更为适用的形式作了说明。
The solvation of Riemann-Hilbert boundary value of non-regular equations is discussed in generalized situation.By introducing a transform which has the same regular Riemann-Hilbert boundary value problems,the problems are separated into a Riemann boundary problm and Hilbert boundary problem which are solved individually.Then,some special diagonal matrices are introduced for helping to transfer those equations of Riemann-Hilbert boundary value problem to regular form and obtain the generalized solvation.Some...