位置:成果数据库 > 期刊 > 期刊详情页
一种新的基于约简的多分类器融合算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]上海大学计算机工程与科学学院,上海200072, [2]青岛大学信息工程学院,山东青岛266071
  • 相关基金:国家自然科学基金(No.61170106).
中文摘要:

提出了一种新的多分类器融合算法。对特征的提取以约简为基础,按照一定的策略添加若干个属性重要度和特征贡献率大的特征,构成一个融合的特征子集空间;接着借助于kNN的思想,计算测试样本的尼个最邻近点的类别百分比,为了提高分类精度,引入了样本相似度测度测试样本与尼个最邻近点的相似性,通过设置合适的类别百分比和样本相似度的阈值,最终确定测试样本的类别归属。6个UCI标准数据集的实验分析表明,算法是有效的、可行的。详细分析了不同的约简和不同的阈值对分类精度的影响。

英文摘要:

The feature extraction is based on a reduction, and then to add several features that the value of attribute significance or contribution rate is large according to certain strategy, the feature subset space combined is constituted. With the idea of kNN, to calculate the category percentage of the k-nearest neighbors around the test sample. In order to improve the classification accuracy, the sample similarity measure is introduced to calculate the similarity between the test samples and k-nearest neighbors. By setting the appropriate threshold of the category percentage and the sample similarity, to ultimately determine the category of the test samples. The algorithm' s validity and feasibility have been verified by six multidimensional data sets from UCI. The impact of the different reductions and different thresholds for classification accuracy is analysed detailedly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887