因为质地图象不能被单个象素的灰色的水平信息直接处理,我们建议反映在每个象素集中的补丁的紧张分发的一个新质地描述符。然后, Potts 模型的一般多相的图象分割模型被增加质地描述符的区域信息为质地分割扩大。一个快数字计划基于裂口 Bregman 方法被设计加快计算过程。算法是有效的,并且质地描述符和典型函数能容易被实现。用合成质地图象,真实自然景色图象和合成的孔雷达图象的实验被介绍给在我们的方法和另外的最先进的技术之间的质的比较。结果证明我们的方法能精确地分割目标区域并且在分割自然图象特别与另外的方法相比是竞争的。
Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.