设妒表示p-可分群的群类。利用完全c-可换子群的概念,得到了p-可分群的两个充分条件:(1)如果群G的4阶循环子群在G中完全c-可换且G的任意极小子群含于Zφ(G)中,那么G是p-可分群;(2)设H G且G/H是p-可分群。如果H的任意阶循环子群在中完全c-可换且H的任意极小子群包含在Zφ(G)中,那么G是p-可分群。
Let φ be the class of all p-decomposable groups. Using the concept, completely c-permutable subgroup of finite groups, two sufficient conditions of p-decomposable group are obtained : ( 1 ) If any cyclic subgroup of G of order 4 is completely c-permutable in G and any minimal subgroup of G is contained in the φ-hypercenter of G, then G is a p-decomposable group ; (2) Let H be a normal subgroup of G and G/H be a p-decomposable group. If any cyclic subgroup of H of order 4 is completely c-permutable in G and any minimal subgroup of H is contained in φ-hypercenter of G, then G is a p-decomposable group.