假设G是一个有限群,H是G的一个子群。H称为G的CAP-子群,如果H覆盖或远离G的每个主因子;H称为G的CAP-嵌入子群,如果对于H的每个素因子p,存在G的某个CAP-子群K使得H的某个Sylow p-子群也是K的一个Sylow p-子群。利用一些素数幂阶子群的CAP-嵌入性研究有限群的p-幂零性,推广了前人的一些结果。
Suppose G is a finite group and H is a subgroup of G.H is said to be a CAP-subgroup of G if H covers or avoids every chief factor of G;H is said to be a CAP-embedded subgroup of G if,for each prime p dividing the order of H,there exists a CAP-subgroup K of G so that a Sylow p-subgroup of H is also a Sylow p-subgroup of K.We investigate the influence of CAP-embedded subgroups of prime power order on the p-nilpotency of finite groups.Some recent results are generalized.