称群G的一个子群H在G中是S可补的,如果存在G的一个子群K,使得G=HK且H∩K≤HSG,其中HSG是包含在H中的G的最大次正规子群.主要利用Sylow子群及其子群的S可补性刻画群的结构,得到了可解群的一些结果.
A subgroup H of a group G is said to be S-supplemented in G if there exists a subgroup K of G letting G = HK and H ∩ K ≤ HSG, where HSG is the largest subnormal subgroup of G contained in H. The structure of finite groups is determined by using S-supplemented subgroups and some results about .solvable group are obtained.