位置:成果数据库 > 期刊 > 期刊详情页
有限群的超可解和可解性
  • ISSN号:1007-824X
  • 期刊名称:《扬州大学学报:自然科学版》
  • 时间:0
  • 分类:O152.1[理学—数学;理学—基础数学]
  • 作者机构:[1]徐州师范大学数学科学学院,江苏徐州221116
  • 相关基金:国家自然科学基金资助项目(10771180)
中文摘要:

设G是一个有限群,F是一个群类.如果存在G的一个正规子群T使得HT是G的正规子群,并且(H∩T)HG/HG包含在G/HG的F-超中心ZF∞(G/HG)中,则称G的子群H在G中Fn-正规.利用Fn-正规子群的性质给出超可解群和可解群的一些新的判别准则,并对以前的结果进行推广.主要定理有:①设G是一个可解群,G超可解当且仅当G的每个次正规子群在G中Un-正规.②设G是一个有限群,N是G的一个非平凡正规子群,则N可解当且仅当G的每个不包含N的极大子群在G中Sn-正规.③群G是可解的当且仅当下列两个条件之一满足:(a)存在G的Sylow 2-子群P使得P的每个极大子群在G中Sn-正规;(b)对G的某个Sylow 2-子群,P在G中Sn-正规.

英文摘要:

Let G be a finite group and F a class of groups.A subgroup H of G is Fn-normalin G if there exists a normal subgroup T of G such that HT is a normal subgroup of G and(H∩T)HG/HG is contained in the F-hypercenter ZF∞(G/HG) of G/HG.Using Fn-normal subgroup some new characterizations of some classes of groups are given and a series of known results are generalized.① Let G be a soluble group.Then G is supersoluble if and only if every subnormal subgroup of G is Un-normal in G.② Let G be a group and N a non-identity normal subgroup of G.Then N is soluble if and only if every maximal subgroup of G not containing N is Sn-normal in G.③ A group G is soluble if and only if one of the following conditions holds:(a) There exists a Sylow 2-subgroup P of G such that every maximal subgroup of P is Sn-normal in G.(b) There exists a Sylow 2-subgroup P of G such that every maximal subgroup of P is Sn-normal in G.

同期刊论文项目
期刊论文 98 会议论文 1
同项目期刊论文
期刊信息
  • 《扬州大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:江苏省教育厅
  • 主办单位:扬州大学
  • 主编:郭荣
  • 地址:江苏省扬州市大学南路88号
  • 邮编:225009
  • 邮箱:xuebaozr01@mail.yzu.edu.cn
  • 电话:0514-7971607
  • 国际标准刊号:ISSN:1007-824X
  • 国内统一刊号:ISSN:32-1472/N
  • 邮发代号:28-48
  • 获奖情况:
  • 全国高校自然科学学报一等奖,第三届江苏省双十佳期刊,江苏省高校自然科学学报一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3109