利用反射函数理论研究线性系统x.=P(t)x为简单系统的充要条件,建立了系统的Poincar啨映射,并讨论该系统及与其等价的非线性微分系统x.=P(t)x+Fx-1(t,x)R(t,x)-R(-t,F(t,x))的周期解的存在性和稳定性.
This paper gives the necessary and sufficient condition under which the linear differential system x·=P(t)x is a simple differential system by Mironenko's theory of reflective function.Then by applying these results,it studies the existence and stability of the periodic solution of the linear differential system x=P(t)x and the equivalent nonlinear differential system x=P(t)x+F-1x(t,x)R(t,x)-R(-t,F(t,x)).