位置:成果数据库 > 期刊 > 期刊详情页
Charge storage characteristics of Ni nanocrystals formed by synchronous crystallization
  • ISSN号:1674-4926
  • 期刊名称:《半导体学报:英文版》
  • 时间:0
  • 分类:TP332[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TB383[一般工业技术—材料科学与工程]
  • 作者机构:[1]Physics Department, Zhejiang Normal University, Jinhua 321004, China, [2]Surface Physics National Key Laboratory, Fudan University, Shanghai 200433, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (No. 61076055) and the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KL2011_04).
中文摘要:

The rapid thermal annealing(RTA) nano-crystallization method is widely used in the metal nanocrystal fabrication process. However, the high temperature(usually 600–900 ℃) in the RTA process will worsen the performance and reliability of devices. A novel method has been proposed to grow metal nanocrystal by synchronous in situ nano-crystallization of metal thin film(SINC), which is able to resolve the problems mentioned above. Compared with Ni nanocrystals(NCs) formed by RTA, Ni NCs prepared by SINC can obtain more energy to crystallize,and its crystallization temperature is greatly reduced. A large memory window(2.78 V) was observed for Ni NCs deposited by SINC at 300 ℃. However, the largest window is only 1.26 V for Ni NCs formed by RTA at 600 ℃.A large change(from 0.20 to 4.59 V) of the memory window was observed while the operation voltage increased from 0 to˙10 V, which is due to an occurrence of strong carrier trapping in Ni NCs. Flat-band voltage shift rapidly increases to its saturation value, which indicates that electron/hole trapping in Ni NCs mainly occurs at the initial stage of the program/erase process. A theoretical model was proposed to characterize the charging and discharging processes.

英文摘要:

The rapid thermal annealing (RTA) nano-crystallization method is widely used in the metal nanocrystal fabrication process. However, the high temperature (usually 600 900 ℃) in the RTA process will worsen the per- formance and reliability of devices. A novel method has been proposed to grow metal nanocrystal by synchronous in situ nano-crystallization of metal thin film (SINC), which is able to resolve the problems mentioned above. Com- pared with Ni nanocrystals (NCs) formed by RTA, Ni NCs prepared by SINC can obtain more energy to crystallize, and its crystallization temperature is greatly reduced. A large memory window (2.78 V) was observed for Ni NCs deposited by SINC at 300 ℃. However, the largest window is only 1.26 V for Ni NCs formed by RTA at 600 ℃. A large change (from 0.20 to 4.59 V) of the memory window was observed while the operation voltage increased from 0 to 4-10 V, which is due to an occurrence of strong carrier trapping in Ni NCs. Flat-band voltage shift rapidly increases to its saturation value, which indicates that electron/hole trapping in Ni NCs mainly occurs at the initial stage of the program/erase process. A theoretical model was proposed to characterize the charging and discharging processes.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《半导体学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国电子学会 中国科学院半导体研究所
  • 主编:李树深
  • 地址:北京912信箱
  • 邮编:100083
  • 邮箱:cjs@semi.ac.cn
  • 电话:010-82304277
  • 国际标准刊号:ISSN:1674-4926
  • 国内统一刊号:ISSN:11-5781/TN
  • 邮发代号:2-184
  • 获奖情况:
  • 90年获中科院优秀期刊二等奖,92年获国家科委、中共中央宣传部和国家新闻出版署...,97年国家科委、中共中央中宣传部和国家新出版署三等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:7754