本文研究一类非齐次二阶椭圆型方程-divA(x,u,Du)-B(x,u,Du)的Kφr(Ω)-障碍问题的很弱解.利用Hodge分解的方法及逆H61der不等式,给出非齐次方程的障碍问题很弱解的局部正则性.由于B(x,u,Du)中u和Du的增长指数为次临界,为了得到局部正则性,我们对同一积分项使用了两次Young和Ho1der不等式的技巧.
This paper study the very weak solutions of Kφr(Ω) -obstacle problems to a class of nonhomogeneous elliptic quation of second order -- divA(x,u,Du) = B(x,u,Du), We obtain a local regularity of very weak solutions of obstacle problems to the nonhomoge- neous elliptic equation by using the method of Hodge decomposition and reverse HOlder ine- quality. To obtain the local regularity,we apply HOlder and Young ineuqalities twice for the same lntegran Du. d since the growth exponents of B(x,u,Du) are subcrtical with respect to u and Du.