以苹果中残留吡虫啉为研究对象,根据中国家庭在苹果食用前的清洗习惯,选择6种不同清洗方式(清水冲洗、清水浸泡后再冲洗、食用盐溶液浸泡后再冲洗、食用醋溶液浸泡后再冲洗、食用碱溶液浸泡后再冲洗和果蔬清洗剂溶液浸泡后再冲洗)清洗苹果。研究表明,清水浸泡后再冲洗对苹果残留吡虫啉的去除效果最好,去除率为53.46%~84.23%,加工因子为0.157 7~0.465 4。在苹果加工方式中,清水浸泡后再冲洗、去皮对苹果残留吡虫啉去除率为91.20%~97.64%,加工因子为0.023 6~0.088 0。清水浸泡后再冲洗、去皮、榨汁对苹果残留吡虫啉的去除率为93.26%~97.85%,加工因子为0.021 5~0.067 4。此研究为评估不同的清洗、加工方式对苹果中残留农药的去除效果,对食品风险性评估具有重要指导意义。
In this study, imidacloprid residues on apples were cleaned with different techniques following the vegetable cleaning habits of Chinese households, including rinsing with running water, and cleaning after soaking in water, edible vinegar, edible salt, sodium bicarbonate solution or fruit and vegetable cleaning solution. The results indicated that soaking the apple fruits in water followed by rinsing with running tap water could effectively remove the imidacloprid residues and removal rates were in the range of 53.46%–84.23% with processing factors of 0.157 7–0.465 4. removal rates were 91.20%–97.64% and processing factors were 0.023 6–0.088 0 when the apple fruits were soaked in water for different times and then peeled. removal rates were 93.26%–97.85% and processing factors were 0.021 5–0.067 4 when the apple fruits were soaked in water for different times before being peeled and juiced. Our research revealed the relationship between pesticide residues and cleaning approaches, which can provide the important theoretical basis for risk assessments of pesticide residues in foods.