位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机的飞行事故率预测模型
  • ISSN号:1000-0984
  • 期刊名称:《数学的实践与认识》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] V328[航空宇航科学与技术—人机与环境工程;航空宇航科学技术]
  • 作者机构:[1]空军工程大学工程学院,陕西西安710038
  • 相关基金:国家自然科学基金(60572172)
中文摘要:

飞行事故率是表征飞行安全水平的重要指标,其预测是典型的小样本问题.针对目前飞行事故率预测中存在的预测精度不高的问题,提出了一种基于回归支持向量机的飞行事故率预测建模方法.最后结合实际算例,采用SVR进行了飞行事故率预测建模并把预测结果与灰色预测和灰色马尔柯夫链预测进行了对比.仿真结果表明SVR具有很高的建模精度和泛化能力,从而验证了采用SVR进行航空飞行事故率预测的合理性和先进性.

英文摘要:

Flight accident rate is an important index which reflects the aviation safety degree. The prediction of flight accident rate is typically a small sample problem. Regarding the problem of low prediction precision in today's prediction of accident rate, this paper brought forward Support Vector Regression (SVR) and applied it into the prediction of flight accident rate. Finally, according to the example, the model of flight accident rate prediction based on SVR was built and the results were compared with grey model and grey-Makov prediction model. The simulation results show that SVR has high modelling precision and strong generalization. Therefore the method brought forward above is valid and advanced.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学的实践与认识》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:林群
  • 地址:北京大学数学科学学院
  • 邮编:100871
  • 邮箱:bjmath@math.pku.edu.cn
  • 电话:010-62759981
  • 国际标准刊号:ISSN:1000-0984
  • 国内统一刊号:ISSN:11-2018/O1
  • 邮发代号:2-809
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22973