设G为有限群,H是G的子群。称H是G的S-拟正规子群,如果对G的任意Sylow子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HKH.满足H∩K在G中是S-拟正规嵌入的。设d是P-群P的最小生成元个数。考虑P的d个极大子群构成的集合Md(P)={P1,…,Pd)且使得它们的交是P的Frattini子群φ(P)。对Md(P)中的群在满足C*-正规假设条件下群的结构进行了研究,并推广了最近的一些结论。
Let G be a finite group and H a subgroup of G. It says that H is an S -quasinormal subgroup of G if HP = PH for any Sylow subgroup P of G ; H is an S -quasinormally embedded subgroup of G if every Sylow subgroup of H is a Sylow subgroup of some S -quasinormal subgroup of G ; H is a C*-normal subgroup of G if there exists a normal subgroup K of G such that G = HK and H n K is S -quasinormally embedded in G. Let d be the smallest generator number of a p -group P. Consider a set Md (P) = { P1 ,…, Pd } of maximal subgroups of P such that ∩i=1^dPi= φ(P) . The aim is to investigate the structure of finite group G under the assumption that all members in Md(P) are C*-normal in G , and generalizes some recent results.