位置:成果数据库 > 期刊 > 期刊详情页
基于统计学习分析多核间性能干扰
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2013.11.1
  • 页码:2558-2570
  • 分类:TP312[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]计算机体系结构国家重点实验室(中国科学院计算技术研究所),北京100190, [2]中国科学院大学计算机控制与工程学院,北京100049
  • 相关基金:国家自然科学基金(61202055,60970024,60925009,60921002,61100011);国家高技术研究发展计划(863)(2012AA010902);国家重点基础研究发展计划(973)(2011CB3025041
  • 相关项目:针对多线程程序失效的用户级半自动诊断方法研究
中文摘要:

普遍认为,云计算和多核处理器将会统治计算领域的未来.但是,目前云计算数据中心的计算资源使用率非常低,其主要原因在于多核处理器上存在严重且不可预知的性能干扰.为了保证关键应用程序的QoS,只能禁止这些关键程序与其他程序共同运行,导致了资源的过度分配.为了提高数据中心的利用率,分析多核间的性能干扰成为一个关键的问题.观察到程序遭受的核间性能干扰可以表示为内存子系统总压力的线性分段函数,而与构成压力的具体应用程序无关以此观察为基础,提出了一种基于统计学习的多核间性能干扰分析方法,使用主成分线性回归的方法获得干扰模型,可以精确且定量地预测任意程序由于内存子系统资源竞争导致的性能下降.实验结果表明,平均预测误差仅为1.1%.

英文摘要:

Cloud computing and multi-core processors are emerging to dominate the landscape of computing today. However, in terms of computing resources, the utilization of modem datacenters is rather low because of the potential negative and unpredictable cross-core performance interference. To provide QoS guarantees for some key applications, co-locations of such applications are disabled, causing computing resource overprovisioning. Therefore precise analysis for cross-core interference is a key challenge for improving resource utilization in datacenters. This study is motivated by the observation that the performance degradation of one application suffered from cross-core interference can be represented as a piecewise function of the aggregate pressures on memory subsystem from all cores, regardless of which applications are co-running and what their individual pressures are. The study results in a statistical learning-based method for predicting cross-core performance interference as well as predictor models using PCA linear regression, which can quantitatively and precisely predict performance degradation caused by memory subsystem contention in any applications. Experimental results show that the average prediction error of the proposed method is 1.1%.

同期刊论文项目
期刊论文 143 会议论文 81 获奖 3 专利 9 著作 4
期刊论文 48 会议论文 36 专利 15
期刊论文 24 会议论文 6
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609