研究了一类具有简化Holling-IV类功能性反应且包含食饵避难所的捕食-食饵模型.分析了该系统的平衡点性态,通过对正平衡点焦点量的计算,得到正平衡点外围至少可以存在2个极限环,并得到在食饵避难所作用下的Hopf分支和异宿轨分支.此外还分析了食饵避难所对系统的影响.
We consider a predator-prey model with simplified Holling-type IV response function incorporating a prey refuge. Through qualitative analysis of the model,at least two limit cycles around the positive equilibrium point with the result of focus value,the Hopf bifurcation and Heteroclinic bifurcation under a prey refuge are obtained. We also show the influence of prey refuge.