研究如下一类稀疏效应下的食饵-捕食系统: dx/dt=x^2(a-bx^2)-exy,dy/dt=-cy+(βx^2-ry)y 应用常微分方程定性理论对该系统的平衡点进行分析,得到极限环存在唯一性及不存在的参数条件.
The following prey -predator system model with sparssing effect is analyzed: dx/dt=x^2(a-bx^2)-exy,dy/dt=-cy+(βx^2-ry)y By using qualitative theory of ordinary differential equations, we have analyzed the equilibrium points, obtained the parameter region of the existence, uniqueness and nonexistence of limit cycles of the system.