研究了一类具有扩散和交叉扩散的Holling-Tanner捕食-食饵生态模型的正解.交叉扩散项的生物意义是食饵者通过自身保护的方式抵制来自捕食者的侵害.利用最大值原理和Harnack不等式给出了此模型正解的先验估计.进一步利用积分性质讨论了非常数正解的不存在性,相应地证明了当扩散系数d1、d2大于特定正常数,且交叉扩散系数d3有界时,此模型没有非常数正解.利用度理论讨论了非常数正解的存在性,从而得出若此模型的线性化算子正特征值的代数重数是奇数,且交叉扩散系数d3不小于给定正常数时,此模型至少存在一个非常数正解.
The positive solutions are discussed for a class of the Holling-Tanner prey-predator ecological model with diffusion and cross-diffusion.The biological implication of cross-diffusion means that the prey species exercise a self-defense mechanism to protect themselves from the attack of the predator.By means of maximum principle and Harnack inequality,the prior estimate to the positive solutions of the model is given.Furthermore,by using the integral property,the non-existence of the non-constant positive sol...