位置:成果数据库 > 期刊 > 期刊详情页
Design of micropiles to increase earth slopes stability
  • ISSN号:2095-2899
  • 期刊名称:Journal of Central South University
  • 时间:2013.5
  • 页码:1361-1367
  • 分类:TU753.8[建筑科学—建筑技术科学] TD854.6[矿业工程—金属矿开采;矿业工程—矿山开采]
  • 作者机构:[1]Faculty of Resources and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China, [2]School of Environment, Tsinghua University, Beijing 100084, China
  • 相关基金:Projects(51034005, 41002090) supported by National Natural Science Foundation of China; Project(2011QZ05) supported by the Fundamental Research Funds for the Central Universities, China
  • 相关项目:大型露天煤矿高陡时效边坡稳定性理论研究
中文摘要:

A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on beam-column equation and an existing P y curve method was set up and used to find the shear capacity of the micropile. Then, a step-by-step design procedure for stabilization of earth slope with micropiles was introduced, involving six main steps: 1) Choosing a location for the micropiles within the existing slope; 2) Selecting micropile cross section; 3) Estimating length of micropile; 4) Evaluating shear capacity of micropiles; 5) Calculating spacing required to provide force to stabilize the slope; 6) Designing the concrete cap beam. The application of the method to an embankment landslide in Qinghai Province was described in detail. In the final design, three rows of micropiles were adopted as a group and a total of 126 micropiles with 0.23 m in diameter were used. The micropile length ranged between 15 and 18 m, with the spacing 1.5 m at in-row direction. The monitoring data indicate that slope movement has been effectively controlled as a result of the slope stabilization measure, which verifies the reasonability of the design method.

英文摘要:

A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on bearn-colurnn equation and an existing P-y curve method was set up and used to find the shear capacity of the micropile. Then, a step-by-step design procedure for stabilization of earth slope with rnicropiles was introduced, involving six main steps: 1) Choosing a location for the rnicropiles within the existing slope; 2) Selecting micropile cross section; 3) Estimating length of rnicropile; 4) Evaluating shear capacity of mieropiles; 5) Calculating spacing required to provide force to stabilize the slope; 6) Designing the concrete cap beam. The application of the method to an embankment landslide in Qinghai Province was described in detail. In the final design, three rows of rnicropiles were adopted as a group and a total of 126 rnicropiles with 0.23 m in diameter were used. The micropile length ranged between 15 and 18 m, with the spacing 1.5 m at in-row direction. The monitoring data indicate that slope movement has been effectively controlled as a result of the slope stabilization measure, which verifies the reasonability of the design method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中南大学学报:英文版》
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:jcsu@csu.edu.cn
  • 电话:0731-88836963
  • 国际标准刊号:ISSN:2095-2899
  • 国内统一刊号:ISSN:43-1516/TB
  • 邮发代号:42-316
  • 获奖情况:
  • 2006、2008、2010“中国高校精品科技期刊”2009...
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库
  • 被引量:334