与前後一致的来源(CKdVESCS ) 和它的宽松的表示一起的联合 Korteweg-de Vries (CKdV ) 方程被导出。我们在场有为象为 N 乘的公式一样的 CKdVESCS 的任意的时间依赖者功能的概括二进制 Darboux 转变(GBDT ) 重复了 GBDT。这 GBDT 向在二 CKdVESCSs 之间的 non-auto-Bäcklund 转变提供来源的不同学位并且使我们能与 N 任意的 t 依赖的函数构造更一般的解决方案。我们获得安置在上, CKdVESCS 的 negaton, complexiton,和 negaton-positon 答案。
The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.