讨论了B anach空间X上有界线性算子A的解析核K(A)的性质,证明了若算子A具有性质(Kp):对任意复数,λ都存在整数p≥1,使得K(A-λI)=R(A-λI)p成立,则f(A)也具有性质(Kp),f∈H(σ(A)).这里H(σ(A))表示在谱集σ(A)的某开邻域上解析且在σ(A)的任一连通分支上不为常值的复值函数全体.
Study the properties of the analytic core K(A) of an operator A on a Banach space X, and prove that if A satisfies the property(Kp) that its analytic core K(A-λI)=R(A-λI)p for all complex numbers λ and some integer p≥1,then f(A) also satisfies property(Kp) for every non-constant function f that is analytic on an open neighborhood of σ(A).