位置:成果数据库 > 期刊 > 期刊详情页
基于惯性蚁群算法的机器人路径规划
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]桂林电子科技大学机电工程学院,广西桂林541004
  • 相关基金:广西科学研究与技术开发计划课题(No.10100022-8); 广西制造系统与先进制造技术重点实验室课题(No.0842006_020_Z)
中文摘要:

栅格环境下蚁群算法规划出的移动机器人路径存在运行慢、路径弯多、转折次数多、局部最优等问题。为获得较优路径,提出了惯性蚁群算法。在传统蚁群算法规划的路径上,采用惯性优化原理,对每一个节点进行遍历,当两个节点间的优化路径上无障碍物时,将中间节点删除,换成优化路径。根据优化信息,动态调整信息素挥发系数,提高了算法环境适应能力。仿真结果表明,相比传统蚁群算法,惯性蚁群算法能更快地找到较优路径,能有效优化路径质量。

英文摘要:

Ant colony algorithm for mobile robot under grid environment is defective in slow running, many broken lines, frequent turning points and local optimum. In order to obtain optimum path, this paper presents the inertia ant algorithm. Based on the initial path planned by traditional ant colony algorithm, the inertia principle is used to traverse all the nodes on initial path, deleting intermediate node when there is no obstacle existing between the two nodes and changing for optimum path. On the basis of path information, dynamically adjusting the pheromone evaporation coefficient, it can improve environmental adaptation performance of ant colony algorithm. The simulation results show that the inertia ant algorithm can quicker find the optimum path, and it can effectively optimize path quality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887