位置:成果数据库 > 期刊 > 期刊详情页
基于子空间字典偶学习的高光谱图像分类
  • ISSN号:1002-0470
  • 期刊名称:《高技术通讯》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:燕山大学信息科学与工程学院,秦皇岛066004
  • 相关基金:国家自然科学基金(61273019,61473339),河北省自然科学基金(172013203368),中国博士后科学基金面上项目(2014M561202),河北省博士后专项项目(B2014010005)和河北省青年拔尖人才支持计划([2013]17)资助项目.
中文摘要:

针对高光谱高分辨率带来巨大数据量和空间分辨率引起混合像元的问题,提出了基于子空间(subspace)的字典偶学习(DPL)算法,简称DPLsub算法。DPL算法是对字典学习的改进,它通过学习得到综合字典和分析字典,在模式识别中体现了高效性,而子空间投影的方法能更好地表征噪声和高度混合的像元。将光谱和空间特征融合的方法用于分类研究试验。实验数据是两幅高光谱影像,比较了子空间字典偶学习(DPLsub)模型和其他三种分类器即最小二乘支持向量机(LS-SVM)、稀疏多分类回归(SMLR)和字典学习(DL-OMP)的分类结果。实验结果显示,DPLsub算法无论在时间上还是精度上都优于其他算法,证明了这种子空间字典偶学习方法对高光谱图像分类的可行性与高效性。

英文摘要:

In view of the problem of huge data amount from hyperspectra' s high resolution and the mixed pixels problem from the spatial resolution, a subspace-based dictionary pair learning (DPL) algorithm, abbreviated to DPLsub algorithm, was presented. The DPL algorithm is an improvement of the dictionary learning, which reflects the high efficiency in pattern recognition through learning a synthesis dictionary and an analysis dictionary, while the subspace projection method better characterizes noise and highly mixed pixels. The fusion of spectra and spatial char- acteristics was applied to the classification experiment, and two hyperspectral images were used as the experimental data to compare the classification result of the DPLsub model with that of the other three classifiers of least squares support vector machine ( LS-SVM), sparsemultinomial logistic regression (SMLR) and dictionary learning ( DL- OMP). The experimental results verifies the feasibility and effectiveness of the proposed DPLsub algorithm in classification of hyperspectral images, and show that it outperforms other current algorithms in time and accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《高技术通讯》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国科学科技部
  • 主办单位:中国科学技术信息研究所
  • 主编:赵志耘
  • 地址:北京市三里河路54号
  • 邮编:100045
  • 邮箱:hitech@istic.ac.cn
  • 电话:010-68514060 68598272
  • 国际标准刊号:ISSN:1002-0470
  • 国内统一刊号:ISSN:11-2770/N
  • 邮发代号:82-516
  • 获奖情况:
  • 《中国科学引文数据》刊源,《中国科技论文统计与分析》刊源
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:12178