应用能量估计方法和Gagliardo-Nirenberg型不等式证明了带饱和项的Shigesada-Kawasaki-Teramoto两种群互惠模型在齐次Neumann边值条件下整体解的存在唯一性和一致有界性.通过构造Lyapunov函数给出了该模型正平衡点全局渐近稳定的条件.
The method of energy estimate and Gagliardo-Nirenberg type inequalities are employed in order to prove the existence,uniqueness and uniform boundedness of global solutions for a two-species Shigesada-Kawasaki-Teramoto cooperative model with saturated item with homogeneous Neumann boundary value condition.By constructing Lyapunov function,the sufficient condition of global asymptotic stability of the positive equilibrium point for this model is given.