引入了H-Z-空间的概念,证明了由次内积导入的次范得到的内积日H-Z-空间X为B-Z-空间(X,‖·‖),并将泛函分析学中希尔伯特空间的有关性质移植到内积H-Z-空间之中.
This paper introduces the concept for inner product H - Z - spaces and it proves inner product H - Z - spaces X by leading sub - inner product into sub - normed space is B - Z - spaces ( X,‖·‖ ). some qualities of Hilbert spaces in the functional analysis are established in inner product H - Z - spaces.