Σ-protocol 被证明了是一个很强大的密码的工具并且广泛地在众多的重要密码的应用使用。在这篇论文,作者作为一个主要工具使用 Σ-protocol 解决下列困难的问题 1 3 并且构造三个有效密码的协议 4 6:1 ) 怎么为证明一个秘密整数,是有形式 PQ 的一个 Blum 整数构造一个协议 P, Q 是二个不同素数和两 ≡ 3 (现代派 4 ) ;2 ) 怎么为与准确的度 t − 证明一个秘密多项式构造一个协议1 在里面一(t, n ) 阀值秘密分享计划;3 ) 怎么不从零知识的证明构造难区分的证人和证人躲协议;4 ) 有信息理论上的安全的一个公开可证实的秘密分享计划;5 ) 一个代表在单程的排列的存在下面的有能力的签名计划;6 ) 不相关的通用指明的验证器签名计划。
∑-protocol has been proved to be a very powerful cryptographic tool and widely used in nnmerous important cryptographic applications. In this paper, the authors make use of ∑-protocol as a main tool to resolve the following difficult problems 1-3 and to construct three ettlcient cryptographic protocols 4 6:1) How to construct a protocol for proving a secret integer to be a Blum integer with form PQ, where P, Q are two different primes and both -- 3(mod 4);2) How to construct a protocol for proving a secret polynomial with exact degree t - 1 iil a (t, n)- threshold secret sharing scheme:3) How to construct witness indistinguishable and witness hiding protocol not from zero-knowledge proof;4) A publicly verifiable secret sharing scheme with information-theoretic security;5) A delegateable signature scheme under the existence of one-way permutations;6) Non-interactive universal designated verifier signature schemes.