针对一类非线性抛物方程的混合元形式,本文提出了二重网格算法.该算法是在网格大小为H的粗网格上求解一个非线性系统,再在网格大小为h的细网格上进行两次线性计算.算法第二步和第三步的误差分别为O(△t^2+h^(k+1)+H^(2k+1),O(△t^2+h^(k+1)+h^(-d/2)H^(4k+4),其中k为逼近空间的多项式的次数,d为空间维数.该估计对H的选取起了很大的作用.对于粗网格上的非线性计算,本文给出了L^p(2≤p〈∞)模误差估计.
A two-grid algorithm for mixed finite element solution of nonlinear parabolic equations is presented in this paper. The algorithm involves solving one small nonlinear problem on the coarse grid of size H and two linear problems on the fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t^2+h^(k+1)+H^(2k+1),O(△t^2+h^(k+1)+h^(-d/2)H^(4k+4), where k is the degree of the approximating space for the primary variable and d is spatial dimension. The above estimates are useful for determining an appropriate H for the coarse grid problem. The error estimate in L^p for the nonlinear solution of the coarse grid is also presented.