1引言 从Scott—Russell提出在平静的水面上孤波运动的情形以后,大量的目光开始关注它的存在性、其中的性质和动态的交互情形,这是因为许多非线性动态的物理现象可以被描述成一个孤立子的模型.诸如,Korteweg—de Vries(KdV)方程,正弦Gordon(SG)方程和非线性schroedinger(NLS)方程等等.对此类方程已经提出了许多的数值方法,
Computational methods based on a linearized implicit scheme are proposed for the solution of a class compound Korteweg-de Vries(KdV) equation. An important advantage to be gained from the linearized implicit methods is unconditionally stable.Numerical results portraying a single line-soliton solution and the interaction of three-line solition are reported for the compound KdV equation.