1 引言 求解偏微分方程的混合元方法在实际问题(如油藏和地下水的数值模拟)中有广泛的应用.与标准的有限元相比,混合元方法可以同时求解两个变量即压力和流速的近似,而且能保持问题的局部守恒性,从而得到了更好的结果(如Arnold).现已有许多文献使用混合元法求解线性的(如[2]),拟线性的(如Milner)和非线性的(如Park)二阶椭圆问题.
A two-grid algorithm for solving mixed finite element approximation of two-dimensional semilinear elliptic equations is presented. This method involves the solution of a nonlinear system on coarse grid of size H and two linear corrections on the fine grid of size h. Existence and uniqueness of the approximation are proved and error estimates in L^2 are demonstrated for both the scalar and vector functions approximated by the algorithm. Error estimate for the scalar function is also derived in L^θ(2 ≤ θ 〈∞). The above estimates are useful for determining an appropriate H for the coarse grid problem.