摘要:设θ,φ是三角代数u=Tri(A,M,B)的自同构,该文证明了当代数4,A,B只有平凡幂等元时,三角代数Tri(A,M,B)上的每一个Jordan(θ,φ)一导子都是(θ,φ)一导子.
Suppose that θ,φ are automorphisms of triangular algebras u= Tri(A, M,B). In this paper, the authors prove that every Jordan (θ,φ)-derivation of triangular algebras is a (θ,φ)-derivation when triangular algebras Tri(A, M, B) contain only trivial idempotents. Key words: Jordan (θ,φ)-derivation; (θ,φ)-derivation; Triangular algebra.