设Tn(R)是一个含单位元的可交换环R上的上三角形矩阵代数,给出了广义Jordan(α,β)-导子的概念,并证明了任意一个广义Jordan(α,β).导子△(△:n(R)→Tn(R)-双模M)都可以分解成一个广义(α,β)-导子φ和一个(α,β)反导子δ之和.
Let R be a commutative ring with identity and let Tn(R) be an upper triangular matrix algebra over R, it is proved that every generalized Jordan (α,β)-derivation from upper triangular matrices over a commutative ring into its bimodule is the sum of a generalized ( α,β)-derivation and ( α,β)-antiderivation.