主要刻画了标准算子代数上满足恒等式Ф(A^4)=Ф(A)A^3+AФ(A)A^2+A^2Ф(A)A+A^3Ф(A)的线性映射Ф具有形式AT-TA(T∈B(H)),并且把这一结果进行推广.
This essay proves that every linear map Ф:A→ B(H) satisfying Ф(A^4) =Ф(A)A^3 + AФ(A)A^2 + A^2Ф(A)A +A^3Ф(A) holds for all A ∈ A is of the form Ф(A) = AT - TA for all A ∈ Aand some T ∈ B (H). And this result is generalized.